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In the case of a perfect fluid in an adiabatic process with irrotational mean flow,
a second order wave equation of convected type is given for the acoustical exergy.
The source terms are linked to fluctuating entropy and to fluctuating Coriolis
acceleration. Propagation equations for these fluctuations are given and solved in
natural co-ordinates associated with the mean flow.
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1. INTRODUCTION

Recently, Doak [1, 2] suggested the idea that the fluctuating total enthalpy is the
unique generalized acoustical field. Previously, Howe [3] also used this variable in
the context of vortex sound. In this paper the use of the acoustical exergy as a
natural acoustical variable is suggested, in the restricted case where the fluid is
ideal, the main flow is irrotational and homentropic.

The availability of a fluid particle to produce work depends not only on its
intrinsic state but also on the surrounding temperature and pressure. That is why
the use of an extrinsic state variable, like exergy, is proposed. The exergy (also
called, in thermodynamical literature, available enthalpy or external mechanical
energy) is defined by P=B−T0s, where B is the total enthalpy, s is the entropy
and T0 is the surrounding temperature (extrinsic variable). In this paper, T0 is the
local mean temperature so that P is related to the potential, of a given fluid
particle, to produce acoustical work from its stationary state.

We derive a theory of propagation for the three variables: fluctuations of
entropy, Coriolis deceleration and acoustical exergy in the particular case of an
adiabatic process of a perfect fluid assuming that the main flow is irrotational and
isentropic. In this case, the entropy fluctuations are first determined (section 2).
Then vorticity fluctuations (by the mean of Coriolis deceleration) are computed
with entropy fluctuations as a source (section 3). These fluctuations can be easily
found in analytical form when co-ordinates linked to the main flow are used
(section 4). The propagation equation for acoustical exergy is given (section 5).

Some applicative examples of this theory can be found in reference [4] and a
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short illustrative example of the use of the acoustical exergy is given in
reference [5].

2. ENTROPY FLUCTUATIONS

Consider the propagation and generation of sound in an inviscid fluid without
any energy exchange with the exterior of the domain (adiabatic process). For all
the quantities, stationary q0, and small fluctuating q' parts (q= q0 + q') are
separated. Moreover, it is assumed that the stationary entropy remains constant,
9s0 =0, and that the stationary flow is irrotational, V0 =0.

In the motion of this perfect fluid, the entropy s of a fluid particle remains
constant:

1s/1t+(v · 9)s=0. (1)

The linearization of equation (1),

1s'
1t

+ v0 · 9s'=
D0s'
D0t

=0, (2)

leads to the solution

s'= s'(x− v0t). (3)

Thus, in this case, entropy fluctuations do not depend on acoustic and vorticity
waves and are only convected with the fluid particles.

3. VORTICITY FLUCTUATIONS

Euler’s equation in Crocco’s form is

1v/1t+9B− vgV=T9s, (4)

where B is the stagnation or total enthalpy.
The equation for transport of vorticity fluctuations V'= curl (v') can be

deduced from linearization of the curl of equation (4):

1V'/1t−curl (v0gV')=−9s'g9T0. (5)

Variations of V' are defined by transported fluctuations of vorticity and by
entropy fluctuations s'. If s'=0, the vortex lines are attached to fluid particles and
are convected by the main flow [6].

The fluctuations s' and V', which propagate with mean flow velocity, are related
to ‘‘pseudo-sound’’. So they are not directly involved in the ‘‘true-sound’’
propagation (fluctuations which propagate with sound velocity respect to the main
flow). They are, however, governing the ‘‘true-sound’’ generation. For this
purpose, it is useful to consider only components of these fluctuations influencing
this generation. The linearization of the equation (4) and of the continuity
equation gives the two main equations governing the sound propagation:

1v'/1t+9P'=−F'(s', V'), (6)
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1r'/1t+9 · m'=0, (7)

where

P'= p'/r0 + v0 · v'=B'−T0s' (8)

is the acoustical exergy,

m'= r0v'+ r'v0 (9)

is the fluctuating mass velocity and

F'(s', V')=V'gv0 + s'9T0. (10)

is a force function.
The second member in the definition of F' comes from entropy fluctuations

which are easy to find explicitly by equation (3). The first member results from
vorticity fluctuations but only two of its components are relevant: those which are
perpendicular to the stationary velocity. The emphasis should therefore be less on
vorticity fluctuations than on the product Y'=V'gv0 itself, which is the
fluctuating Coriolis deceleration.

The equation describing the transport of Y' can be found by making the
vectorial product of equation (5) with v0:

1Y'/1t− v0gcurl (Y')=9s'(v0 · 9T0)−9T0(v0 · 9s')=K'. (11)

Studying directly Y' is more efficient and simpler than methods based on direct
use of vorticity fluctuations V'.

4. SOLUTIONS FOR CORIOLIS DECELERATION FLUCTUATIONS

For solving equation (11), curvilinear ‘‘natural’’ co-ordinates (a1, a2, j) are
introduced. The co-ordinate surfaces j=const are the equipotential surfaces for
the mean flow and domains at constant a1 and a2 are current lines (normal to
equipotential surfaces). In those co-ordinates the projection of Y' on the axis j

is zero and the vectorial equation (11) induces only two scalar equations of first
order (for Y'1 and Y'2). In the case of orthogonality of surfaces a1 = const and
a2 = const, the two equations are independent and could be written (v0 = v0kj )

1hiY'i
1t

+ v0
1hiY'i
hj1j

= hiK'i , (12)

where h1, h2 and hj are the scale factors of curvilinear co-ordinates a1, a2 and j.
It is very difficult to verify, in general, that it is possible to build an orthogonal
co-ordinate system on the equipotential surfaces. However, when the main flow
depends on only one or two ‘‘natural’’ co-ordinates, the problem can be solved
easily. This kind of problem includes, for instance, quasi-unidimensional flow (like
that of a nozzle), cylindrical vortex and helicoidal flow in cylindrical channels. In
the first case, main flow parameters depend only on j while in the two other cases
they do not depend on j. Two dimensional flows are another example of this kind
of problems.
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The scale factor of ‘‘natural’’ co-ordinates is defined by the structure of the
stationary field. Relations binding these co-ordinates come directly from kinematic
equation. In that way, the equation, for an irrotational main flow, v0 =9f0

leads to

v0 =
1
hj

df0

dj
(13)

and hjv0 is a function of only j.
From the equation of mass conservation 9 · (r0v0)=0, the spreading of a

current tube is given by

h1h2r0v0 = h0
1h0

2r
0
0v0

0 =M0
0, (14)

where M0
0(a1, a2) is the mass flow through the unit current tube (da1, da2) on the

base surface (j=0).
The source term on the right side of equation (11) is

hiK'i =
1s'
1ai

v0
1T0

hj1j
+

1T0

1ai

1s'
1t

. (15)

If K'i =0 (i.e., for s'=0), the solution of equation (12) is

hiY'i (x, t)= h0
i Y'0i (a1, a2, t), (16)

where t, the phase of the signal, is

t= t−g
j

0

hj dj

v0
. (17)

Y'0i (a1, a2, t) is the distribution given on the base surface.
The couple hiY'i is transported along the current line without any change. The

projection Y'i increases (respectively decreases) according to the increase
(respectively the decrease) of the scale factor along the related axis in the current
tube deformation.

If K'i $ 0, the solutions of equation (11) can also be found by direct integration
of this equation. The function s'(x, t) is given by equation (2) for transport of
entropy in ‘‘natural’’ co-ordinates,

1s'
1t

+ v0
1s'
hj1j

=0, (18)

which has the analytical solution

s'(x, t)= s'0(a1, a2, t). (19)

The function hiY'i is calculated as

hiY'i (x, t)= h0
i Y'0i (a1, a2, t)−

1
Cp g

j

0

8i (j, a1, a2, t) dj, (20)
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where Cp is the specific heat coefficient at constant pressure and

8i (j, a1, a2, t)= v0
1v0

1j

1s'0(a1, a2, t)
1ai

+ hj

1v0

1ai

1s'0(a1, a2, t)
1t

. (21)

The solution of equation (20) is very simple and, for tq 0, is given by only the
distribution of s'0(a1, a2, t) and Y'0i (a1, a2, t), for i=1, 2 on the base surface.

If it is required, the distribution of vorticity can be calculated with Y'=V'gv0

and equation (5):

M0
0
h1V'1
r0

= h2Y'2, M0
0
h2V'2
r0

=−h1Y'1,

−
1

1t 0hjV'j
r0 1= hjv001h2Y'2

1a1
−

1h1Y'1
1a2

+
1s'
1a1

1T0

1a2
−

1s'
1a2

1T0

1a11. (22)

5. PROPAGATION EQUATION FOR ACOUSTICAL EXERGY

Upon making use of equation (6), the material derivative of P' is given by

D0P'
D0t

=
1
r0

1p'
1t

− s'v0 · 9T0, (23)

which can be transformed, by using equation (2), into

D0

D0t 01
c2

0

D0P'
D0t 1=

1

1t 0D0

D0t 0r'
r011− s'v0 · 90v0 · 9T0

c2
0 1. (24)

Transformation of the continuity equation (7) leads to

D0

D0t 0r'
r01=−

1
r0

9 · (r0v'). (25)

The elimination of the term in v' between equations (24, 25) and the divergence
of r0 times equation (6) leads to a second order equation for the acoustical exergy
P':

1
r0

9(r09P')−
D0

D0t 01
c2

0

D0P'
D0t 1=−

1
r0

9 · (r0Y')−
1
r0

9 · (r0s'9T0)

+ s'v0 · 90v0 · 9T0

c2
0 1. (26)

The generation of pressure waves is given by the solution of equation (26) where
the right side is defined by the solutions (19) and (20).

Equation (26) is very close to Howe’s equation for stagnation enthalpy B', small
differences appears in the right side caused by the difference in variables
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(B'=P'+T0s'). In the case of isentropic flows B' equals P'. On the other hand,
in non-isentropic flows the physical and thermodynamical meanings of B' and P'
are different.

P' characterizes the work that can be produced by a gas when it is transformed
from equilibrium condition. P' is then related to the availability of gas to generate
an energy for acoustical waves.

B' characterizes the work that can be produced by a gas when it is transformed
from zero absolute temperature (this is an hypothetical process with no link to the
real process of sound waves).

The non-equivalence of the variables B' and P' is especially clear for adiabatic
non-isentropic processes (for instance in viscous gas). In this case, the stagnation
enthalpy in a volume without any energy exhange with the exterior is constant.
But, according to the second law of thermodynamics, as the entropy of the system
is increasing (some energy is irreversibly transformed in this volume), there is a
decrease in the real work that the gas can produce. This implies that the potential
acoustical radiation decreases also.

Even for isentropic processes, the use of B' for estimating the sound intensity
can also lead to important disadvantages mainly caused by the invariability of
entropy along velocity lines. For instance, in the case of stationary flow (without
any gradient) generated in a point source r=0, the value P' decreases 1/r and
s' is kept constant on velocity lines. Far enough from the source, B' depends
practically only on entropy fluctuations. This is the reason why the use of B' is
not convenient for estimating the sound radiation with approximative methods,
e.g., numerical methods.

Classical variables (p', v' and s') are connected to variables (P', Y' and s') by

1v'/1t=−9P'−Y'− s'9T0 +F', (27)

1p'/1t= r0(D0P'/D0t)+ r0s'v0 · 9T0 − r0v0 · F', (28)

where F' is the fluctuating external force (which is not always equal to zero). The
distribution of p', v' and s' on a surface G0, which is not a surface of current, can
be defined by distribution of P', Y', s' and by the normal derivative 1P'/1n on
the same surface.

It is convenient to give the boundary conditions for P', Y' and s' on an
equipotential surface j=const and a current surface f(a1, a2)= const. The
distribution of Y' and s' has to be given on a surface j=const at the upstream
side of the domain.

When the current pipe is closed by a non-moving impermeable solid surface, the
boundary condition is (with F'=0):

1P'/1n+Y'n + s' 1T0/1n=0. (29)

On an oscillating wall where the normal velocity is v'n (x, t), this boundary
condition becomes

1P'/1n=−D0v'n /D0t−Y'n − s' 1T0/1n. (30)
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If the flow is limited by an impedance surface, the boundary condition is

1p'H
1t

=
D0P'
D0t

+ r0s'(v0 · 9T0),
1P'
1n

=−
1v'n
1t

−Y'n − s'
1T0

1n
, (31)

where p'H and v'H (p'H )=−v'n are the pressure and normal velocity in wall direction
near the impedance wall outside of the flow.

6. CONCLUSION

The results presented show that, in the case of perfect fluid in adiabatic process
with irrotational mean flow, the acoustical exergy satisfies a second order wave
equation of convected type. In this restrictive case, the acoustical exergy is a
possible alternative to the total enthalpy to describe the acoustical field. In such
a case, acoustical exergy has the advantage of being a real availability of energy
for acoustical waves.

The source terms, in the propagation equation for acoustical exergy, correspond
to excitation by entropy waves and by fluctuating Coriolis acceleration waves.
Both of these waves propagate with the mean flow and can be computed if they
are given on an upstream section.

It can be noticed that the fluctuating vorticity is not really needed: only the
fluctuating Coriolis acceleration need be computed. This calculation is easy to
make in natural co-ordinates linked to the mean flow.
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