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SUMMARY

A method based on the approximation of the radial pressure profile is developed to analyse
the acoustic performance of an expansion and of an expansion chamber at low frequencies.
This model is able to predict very accurately the added length of an expansion when there
is neither porous material nor perforated tube and can be applied as well when a bulk-
reacting lining and perforated tube are included. This model of a dissipative silencer

gives results which compare very favorably with experimental data.



1. INTRODUCTION

The cylindrical dissipative silencer is one of the most commonly used devices in practical
flow duct acoustic. Its acoustic performance can be predicted in the general case (with
flow, with arbitrary external shape, ...) by an FEM approach [1] or by mode matching
techniques [2], [3]. However, those methods require a considerable numerical effort which

limits their usefulness in practice.

The purpose of this paper is to derive a simple model which can be used to predict the

acoustic performance of a bulk-reacting dissipative silencer at low frequencies.

With a similar aim in mind, Wang [4] applied the decoupling method to the case of a
dissipative silencer with perforated tube (the decoupling method having been derived by
Sullivan and Crocker [5] for the case of an expansion chamber with perforated tube). This
method considers that the acoustic pressure is uniform on either side of the perforated
tube and that the difference between those two pressures is linked to the perforated tube
impedance. However, in most practical applications, the perforated tube is introduced to
avoid erosion of the porous material and is not supposed to have any significant acoustical
effect. However, when the impedance of the perforated tube is small or vanishes, the

decoupling method fails to give an accurate description of the muffler.

The key point of the model developed in this paper is that it takes into account the real
radial variation of pressure (and then of radial velocity) in an approximate way. In the
presentation given here, this effect is introduced via an equivalent admittance linking the
difference in mean pressures between the air and the material to the radial velocity at
the interface. Then, even if the perforated tube is absent the model can give an accurate

description of acoustical performance.

In Section 2 the principle of the method is described. By averaging the Euler and conti-
nuity equation both for the air and the porous material, an eigenequation is obtained by
assuming that the radial velocity at the interface only depends on the difference in mean

pressure. The equivalent admittance is then given by assigning an appropriate shape for



the radial velocity profile. The eigenequation displays two kind of solutions in the lined
section: one correspons to the classical plane or quasi-plane wave, the other takes into ac-
count most of the effects of higher order modes. This approach is applied in Section 3 to
a sudden lined expansion. The model is applied to the case with neither porous material
nor perforated tube to provide an easy comparison with an exact solution. The modeling
of the cylindrical dissipative silencer of finite length is given in Section 4. Predictions

using the model are then compared to experimental results.

2. LOW FREQUENCIES APPROXIMATION

2.1. AVERAGED EQUATIONS

In this section, the basic linear equations governing the propagation of axisymmetric
fluctuations in a duct of radius r, are given. This duct consists of an inner cylinder with
radius r,, referred to as region A, and of an outer coaxial cylinder with radius varying
from r, to 7, referred to as region B (see Figure 1). Between those two regions, a rigid

perforated screen induces a pressure jump proportional to the radial velocity.

The fluctuating variables used here are the pressure p, the axial velocity v and radial
velocity v with a subscript a or b depending on the region. In region A, the fluid is
characterized by the compressibility x, and the density p,. In region B, a porous material
with a rigid frame can be present and is described by an equivalent fluid model. The
porous media is then characterized by an effective compressibility x,(w) and an effective
density py(w) depending on the frequency w. Those effective values are given in appendix

A as functions of the characteristics of the material and of the saturating fluid.

Taking a time dependence e/ ¢, the propagation equations can be found from the conti-

nuity and the Euler equations:

Jwk; pi = —V.v; (1a)

Jw pi vi = —Vp; (1b)



where ¢ = a or b.

If there is no screen the radial velocity and the pressure are continuous at r = r,. With a
perforated screen (the impedance of the screen is z,), the radial velocity is still continuous

but the pressure jumps from py(7,) t0 Pa(ra) With py(re) — Pa(rs) = 250a(ra) = 2s0s(74)-

By integrating equation (1la) and the projection of equation (1b) on the axial direction,

the following averaged equations are obtained:

U, _ dp.

Dg = — - Za a = ) 2
dU, dp
Yipy= - " +q, LU == (2b)

where Y; = jwk;S; is the admittance per unit length, Z; = jwp;/S; is the impedance per
unit length, p; is the mean pressure over the section S; (S, = 772 and S, = #(ri —r2)), U;
is the acoustical flow rate over the section \S; (integral of axial velocity over the section)

and g = 277, v,(r,) is the flow rate per unit length through the perforated screen.

The flow rate ¢ is supposed to be linearly related to the difference of mean pressure
between the two regions: ¢ = Y (p, — pp). Thus, by taking a dependence in the axial

direction having the form e /¥ two equations for the mean pressures can be found:

kK*+T2+Z,Y —Z,Y Da 0 )
-Z,Y kK2 +T2+ Z,Y D 0

where the propagation constants I', and 'y in region A and B are given by I'? = Z;Y;

(i = a,b).
2.2. DETERMINATION OF THE WAVENUMBERS

The determinant of the system (3) must vanish in order to have non trivial solutions.

This gives the eigenequation for the wavenumber £ :

K 42 (T2 + Z,Y ) B + (an)2 - i (AF2)2 +2 (Zmrfn - iAZAFQ) Y=0 (4
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where I'2, = (T2 +T2)/2, AT2 =T2 — T2, Z,, = (Z, + Z)/2 and AZ = Z, — %,

The solutions are written

k2 = -T2 —Z,Y(1- A)
ki = -T2 —Z,Y(1+ A)
where
AT? [ AT? 12
= — — | = +AZ :
A <1+2Z%Y<2Y+ )) (5)

The values of k; and ks are chosen so that their imaginary parts are negative (obviously,
—k; and —ks are also solutions of the eigenequation). By substituting &; for k£ in equation

(3), it can be seen that the mean pressures are related for the first solution by p,; = mp,1

where
_AT?+ AZY +2Z,AY (6)
m= 27.Y
and for the second solution mZ,pye = —Zypae. When the porous material in the region

B is not too resistive (i.e. when AT'? < I'2), the absolute value of m is close to 1. In
this case the first solution corresponds to a quasi plane mode while the second solution

corresponds to the effects of higher order modes.

2.3. DETERMINATION OF THE EQUIVALENT ADMITTANCE

The remaining problem is the determination of the admittance

Y — 277 Va(Ta) 27T,
pa - pb jwpa(sa + Zs + jwpb(sb
where
_ Do — pa(ra) _ pb(ra) — Db
0, = ———= 0p = —————.
Jwpava(Ta) Jwpyvy(Ta)



To compute the coeflicients §, and d,, the shape of the pressure and of the radial velocity
have to be known in the regions A and B. For that purpose approximate profiles of
velocity and pressure are needed in the two regions. In the problem studied in this paper
(area expansion), a good approximation of the acoustic field just behind an expansion is

needed. Thus the approximate profiles are choosen with this aim in mind.

In the region A, the radial velocity vanishes when r = 0 and is supposed to increase
linearly. Thus, v,(r) is approximated by v,(r) = A r. By integration of the radial
projection of equation (1b), the pressure p,(r) is given by pa(r) = pos — jwp.Ar?/2. In

this approximation, the coefficient J, can easily be computed and §, = r,/4.

In the region B, the radial velocity is chosen 1) to fulfill the boundary condition at the
outer wall: vy(ry) = 0; 2) to fit the radial velocity just behind an expansion with a big
area ratio. Thus the axial velocity is taken with the form vy(r) = B(1/r2 — 1/r?) [6] and,
by integration, the pressure is py(r) = pop — jwpesyB(r/ri + 1/r). With this approximate
shape, the coefficient J, is equal to &, = r, f () with @ = r, /7, and

(1-a)(3+a)

f(a) = 3(1 + a)2

It can be noted that for moderate area ratio (o ~ 0.5) a linear radial velocity profile in

the region B give a value §;, very close to the value obtained with the choosen profile.

Then the admittance Y is written

~1
2 1
Jjwps |4 pe JWPaTa

2.4. MODEL WITHOUT POROUS MATERIAL

In this subsection, the region B is filled with the same fluid as the region A. The sound
velocity in the fluid is ¢y and py is the density. Then the lineic admittances are Z, =
Jjwpoe/S, and Zy, = jwpy/Sy. The propagation constants are I'y, =T’y =T, = —jw/c¢y and

AT? = 0. The wavenumbers are



by = T == (8)
Co

and

w2 11 12
ky = (=L, — 2Z,,Y)V/? = <(5) — jwpo (S— + E,) Y) . 9)
It can easily be seen that p,; = pp1. Thus, the first solution corresponds to the classical
plane wave in the duct and is not influenced by the value of the admittance Y. For the

second solution, the mean pressures in both regions are related by S,pe2 = —SpPs2-

Equation (9) is given by Pierce [7] when there is a perforated tube between the two regions
and can be deduced from the results of Kergomard et al. [8] in the case of a perforated
tube modelled discretely. The main difference is that the model presented here takes into
account in an approximate form the difference between the actual pressure and the mean
pressure in the two regions. This difference is included in the admittance Y. Thus, this

model is also valid when the screen impedance goes to zero.

When the perforated screen is absent z; = 0, the admittance Y is given by

v= (50 (@)

and the wave number of the second solution is

w2 2\ 1/2 \
ke = <(%) - ZT%) where 7" = a2(1—a2)(21/4+f(a))'

This second mode is evanescent as long as the pulsation frequency w is lower than w, =
vco/Tp. For oo = 0.5, the value of w, is 4.43 ¢y/r, which is reasonably close to the cut-off
pulsation frequency 3.83 ¢g/7, for the second axisymmetric mode of a circular duct with
radius 7. This comes from the similarity of the pressure profile of the second approximate
solution and of the pressure profile of the exact second mode with o« = 0.5 (see Figure
2a). When « is much smaller than 1 (see Figure 2b), those profiles are very different. It
can be seen from this figure that the second approximate solution is especially adapted to

take into account most of the effects of the higher order modes near a sudden expansion.
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3. SUDDEN EXPANSION AT LOW FREQUENCIES

3.1. TRANSFERT MATRIX OF AN EXPANSION

Two semi-infinite ducts of radius 7, and 7} are joined at z = 0. In the small duct (z < 0,
radius r,) only a plane wave propagates: py, = pj e 7% 4 py e/*? where ky = w/cy. This
wave induces an acoustical flow rate equal to Uy at z = 0 with Z,Uy = jko(p§ — pg)- In
the lined duct (z > 0, radius 7, > r,), the model proposed in section 2. is applied when
the frequency is lower than w.. In the lined duct, the termination for the evanescent
mode (subscript 2) is supposed to be anechoic. Thus the wave in this duct can be seen as
the sum of three terms with an axial dependence e=7%1% e/%1% and e~/%% (the imaginary
part of k1o having been taken negative). Accordingly, the mean pressures in the regions

A and B of the lined duct are written:

— _ —+ —jklw — jklw -+ —jkz:l:

DPa = D1€ +pe +pye

4 ke _ ke Db 4 ks

Py = mpie M 4+ mprett — — pfe
m,

where m is given by equation (6).

The boundary conditions at = 0 are the continuity of the mean pressure and flow rate

for r < r, and vanishing of the flow rate for r, < r <17} :

pd +py = pf+pi +05; (10)

jko (0§ —py) = jki (pf — p7) + jka p¥; (11)
. _ Ly

0 = jkym(pf —p7) —jk2mZa Py (12)

From Egs. (11) and (12), a continuity of volume velocity can be written Uy = U;
where Uy = (p{ — p5)/2c05 20 = Za/jko = poco/S, and Uy, = (pi — piy)/za where
Zel = ZaZb/jkl(Zb + m2Za).



It can be noticed that Uy is the real volume velocity in the small tube but that U;
is not the total volume velocity of the first mode in the large tube. This real volume
velocity associated with the quasi plane mode in the lined duct by is Uy = U,y + Uy =
Gk (1 4+ mZ,/Zy)(pf — p7)/Za. The relation between Uy and U, is

~ 1+mZa/Zb
U =—7F""7""-U,. 13
ey AL (13)

Thus, the two total volume velocities coincide only when m = 1, i.e. when the porous
material is absent, or when m = 0, i.e. when the porous material is so resistive that there

is no acoustical flow through it.

Similarly, the relation between the mean pressure in the small tube py = p{ + p; and

the mean pressure associated with the quasi-plane mode in the region A of the lined duct

pL=pf +p;iis
D1 = Po — 2addlo (14)
where

m2Z,/Z  Z
1+ m2Za/Zb ]k2 .

Zadd =

This leads to the transfer matrix for the plane waves

D1 1 —244a Do

Uy 0 1 Uy

3.2. EXPANSION WITHOUT POROUS MATERIAL

When the region B is filled with the same fluid as the region A, equation (13) shows that
the continuity of volume velocities between the plane modes on both side of the expansion
(Uy = Uy) can be applied in this approximate model. It can be noted that this relation

is also verified in the exact model (see for instance [9]).
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From equation (14), the plane mode pressures in the two ducts can be related by p; =
Po — jwpeAL(w)ug where ug is the acoustic velocity of the plane mode in the small tube

up = Up/S, and AL(w) is the added length given by

(1—0o?)

AL = -
Jka

where jk, is a real and positive number if a resistive screen is absent (real part of z, = 0).

Without any screen and when w — 0, this added length tends toward

1 - o? 1—a)2(1 - a?)(15 — 20 — a2)\ /*
AL=r, “:ra<( @)1 ~e){15 — 2a O‘)> (16)
oy 24

This result is compared in Figure 3 with the formulae for the added length given in

reference [9] with a precision of 0.1 % for the zero-frequency limit. The agreement is

good over all the a range.

Thus, this very simple model allows a good approximation of the acoustic behavior of a

sudden expansion at low frequencies.

4. DISSIPATIVE SILENCER

4.1. TRANSFERT MATRIX OF AN EXPANSION CHAMBER

An expansion chamber of length L is filled with an annular porous material 7, > 7 > 7.
This chamber is connected with two pipes of radius 7, (see Figure 4). The approximate
model developed above is applied in this chamber. The wave in the lined chamber can be
seen as the sum of four terms with an axial dependence e=7%1% eik1e  e=ik2Z gpd e=ik2e,
The boundary conditions are the vanishing of the mean axial velocity in the porous media
at x = 0 and z = L and the continuity of the mean velocity and pressure in zone A at
2 = 0and ¢ = L. Thus, the problem can be completely solved in the context of the present
approximate model. Nevertheless, significant simplifications appear when the amplitude

of the most attenuated mode (wavenumber k,) created at one side of the chamber can be

11



neglected when it reaches the other side (i.e. |e™/*2L| < 1). This assumption is true for
most practical applications. In this case, the transfer matrix of an expansion chamber
can be seen as the product of the transfer matrices of an expansion, 7, of a propagation

of the quasi plane wave from 0 to L, 7,, and of a contraction, 7., where

1 —z,
pr —T Do with 7. = dd ,
Ur U 0 1
cosh(jk; L — 2z sinh(jk( L
pIr :7; br with 7;: (.7 1 ) 1 (.7 1 )
Urr Ur —sinh(jk1L)/zs  cosh(jkiL)
1 —z
Dt —T Drr with T, = dd
Uy Urr 0 1

The transfer matrix of the chamber can be written:

A (A2 -1)/C
P _ TTT po | _ ( )/ Po an
Ut UO C A UO

where A = cosh(jk1l) + zggq sinh(jk1l)/z4 and C = —sinh(jkil)/z.1. The transmission

and reflection coefficients of this chamber are

_ 2 _ 2
97,4C d g A= (ZaC)P 1

T= .
(ZeoC — A2 — 1 (ZaC — A2 — 1

4.2. EXPERIMENTAL VALIDATION

The transmission and reflection coefficients of an expansion chamber with porous material

were investigated experimentally in order to test the validity of the approximate model.

The chamber was inserted in a tube in which linear acoustical plane waves were prop-
agated. On one side (side 0, see Figure 4), an acoustic source provided a wave in
the frequency range 50-1500 Hz. The acoustic pressure in tube 1 is written py =

pge k0% 4 prekot where pf and p; are the incident and reflected pressures on side

12



0, ko is the wave number in the tube taking into account the viscothermal attenuation
and z is the axial distance from side 0 of the chamber. Four microphones in tube 0
allow an overdetermined estimation of pj and p;. The overdetermination is used, with a
least square method, to increase the accuracy of the experimental results. On the other
side (side t), four other microphones are used so that the transmitted pressure p; and
the pressure reflected from the tube termination p; can be determined on side ¢ of the

chamber.

Reciprocity and symmetry of the measured element imply that the transmission 7" and

reflection R coefficients satisfy to pj = Tpf + Rp; and p; = Tp; + Rp{. Thus, the

coefficients
i o4+
R= Do p02 Db gt and T = Do pt2 Do gt
+ — + —
bo — P bo — P

can be computed from the microphone data as functions of the frequency.

For the given expansion chamber the inner radius is 7, = 15 mm, the outer radius is
7y, = 47 mm and the length is L = 360 mm. The porous material is a mineral wool
whose acoustical parameters have been measured using other setup. The values of the
parameters (see Appendix A) are: porosity ® = 0.99, tortuosity o, = 1.1, resistivity
o = 75000 kg m~3 s~1, viscous and thermal characteristic lengths A = 1 10~% m and A'=

21074 m.

The mineral wool is known to be anisotropic. The resistivity perpendicular to the fibers
(radial direction) is bigger than the resistivity along the fibers (axial direction). The
ratio between the axial and radial resistivity is chosen to be 0.7 in accordance with [10].
The anisotropy can be easily introduced in the approximate model. The effective density
to be used depends on the direction on which the Euler equation is projected. The
Euler equation in the radial direction only appears in the determination of the equivalent
admittance Y. Thus, the effective density in Equation (7) is computed with the radial

parameters and the other densities are computed with the axial parameters.

The results from measurement (circles) and prdicted using the approximate model (con-

tinuous lines) are shown in Figure 5. For comparison the results for the empty chamber

13



are given as the dashed lines. The agreement is very good except on the absolute value
of the transmission when the frequency is above 1 kHz. It should be noted that the
attenuation is of the order of 60 dB in this region. Some experimental problems, like
flanking transmission through the external tube of the chamber, could explain this dis-
crepancy. Nevertheless, it can be concluded that the approximate model gives an accurate

description of the performance of the dissipative silencer.

5. CONCLUSIONS

A method based on the approximation of the radial pressure profile is developed to analyse
the acoustic performance of an expansion and of an expansion chamber at low frequencies.
This model is able to predict very accurately the added length of an expansion when there
is neither porous material nor perforated tube and can be applied as well when a bulk-
reacting lining and perforated tube are included. This model of a lined expansion chamber
gives results which compare very favorably with experimental data. This approach could
be extended to the case where a flow is present [11] and it can describe the appearance

of hydrodynamic modes in this case.

Owing to its simplicity, this approximate model of a dissipative silencer could be easily
implemented as a predictive tool for computing the acoustic performances in flow duct

acoustics.
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APPENDIX

In rigid-framed porous materials, the linear sound propagation can be described by means
of using an equivalent fluid with an effective density and an effective compressibility which
are complex values depending on the frequency (see, for example, [12] and [13]). The

continuity and Euler equations are written

op

Re E =-V.v
ov

Pe ot —Vp

where p and v are the macroscopic acoustic pressure and velocity (the macroscopic veloc-
ity is chosen such as the continuity of velocity applies at an interface between the porous

material and air).

The effective characteristics of the material k. and p, can be obtained with the help of six
parameters: the porosity ®, the tortuosity o, the viscous and thermal permeabilities kg

and k,, the viscous and thermal characteristic lengths A and A’. The effective density is

1/2)

equal to

0o 1 [ M
= 1+ — |1+ —
Pe b ( +j:v + 2]:5

where the reduced frequency z is given by

. Wliso ko
Covd
the shape factor is
8k00400
M =
DA2

po 1s the density and v is the kinematic viscosity of the fluid. The effective compressibility

is equal to



where the reduced frequency z’ is

,  wPky
YT
the shape factor is
8k
1 _ 0
M= a0

co is the sound velocity and P, is the Prantl number in the fluid. In this paper, the
static thermal permeability is approximated [13] by kj = ®A’?/8 and the static viscous

permeability kg is related to the air flow resistivity by o = pov/ko.
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FIGURES CAPTION

Figure 1: Typical geometry and pressure profile.

Figure 2: Normalized pressure for the second solution ps/p, as a function of the normal-
ized radius r /r, with & = 0.5 (a) and a = 0.05 (b); continuous line: approximate solution,

dotted line: mean pressure in regions A and B; dashed line: second axisymmetric mode.

Figure 3: Variation of the added length AL/r, at the zero frequency limit as a function

of the radius ratio a = r,/ry; continuous line: equation (16), dashed line: reference [9].
Figure 4: Geometry of the lined expansion chamber.

Figure 5: Absolute value of the reflection (a) and transmission (b) coefficients of an ex-
pansion chamber with porous material. o : measurements, continuous line : approximate

model, dashed line : results for the same chamber without porous material.
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Figure 1: Typical geometry and pressure profile.
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Figure 2: Normalized pressure for the second solution ps/p, as a function of the normal-
ized radius r /r, with & = 0.5 (a) and a = 0.05 (b); continuous line: approximate solution,

dotted line: mean pressure in regions A and B; dashed line: second axisymmetric mode.
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Figure 3: Variation of the added length AL/r, at the zero frequency limit as a function

of the radius ratio a = r,/ry; continuous line: equation (16), dashed line: reference [9].
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Figure 4: Geometry of the lined expansion chamber.
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Figure 5: Absolute value of the reflection (a) and transmission (b) coefficients of an ex-
pansion chamber with porous material. o : measurements, continuous line : approximate

model, dashed line : results for the same chamber without porous material.
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