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Av. O Messiaen, F-72085 LE MANS Cedex 9, France

Tel: (33) 2 43 83 35 09 Fax: (33) 2 43 83 35 20

EMail: yves.auregan@univ-lemans.fr

† present adress:

Haus de Wissenschaftler e.V., Dorotheenstr. 76

Hamburg D-22301, Germany

Tel: (49) 40 27 43 62 Fax: (49) 40 27 43 62

EMail: A Starobinskaja@public.uni-hamburg.de

running headline: acoustical energy dissipation/production potentiality

number of pages: 15

number of figures: 5

1



Abstract

The acoustic energy conservation law in presence of flow can be very effectively expressed

with the help of two variables: the acoustic mass velocity and the acoustic exergy. The

minimal and maximal ratio of the dissipated or generated acoustic power over the incident

acoustic power are computed from the scattering matrix of an acoustic element. This

method is applied to a diaphragm and to a laminar element in presence of flow. It is

shown that the results provide indication for the physics of dissipation of acoustic energy

in these sytems.
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1 Introduction

One considers any acoustic element located at the junction of waveguides (see Figure

1). In each guide, a uniform mean flow is assumed and several acoustic modes can

propagate. The relations between the incoming waves and the outcoming waves (both

plane and transverse) are given by a scattering matrix. The aim of this paper is to

determine from a given acoustical scattering matrix the potentiality of the element to

dissipate or generate acoustic energy i.e. to determine the minimal and maximal ratio of

the dissipated or generated acoustic power over the incident acoustic power.

In a first section, conservation law for acoustic energy are derived in the natural variables:

acoustic mass velocity and acoustic exergy. The second section shows how to extract,

from the scattering matrix, the minimal and maximal ratio of the dissipated acoustic

energy over the incident acoustic energy. Two examples are then given in which this

ratio is computed for the measured scattering matrices of a diaphragm and of a laminar

element in presence of flow.

2 Acoustic power in waveguides in presence of flow

The conservation law for acoustic energy in presence of flow was given by Morfey [1]

under general assumptions. It can be put in the form

∂E

∂t
+ ∇.I = −D (1)

3



where the density E and flux I of acoustic energy function are given respectively by

E =
1

2
(v′.m′

a + ρ′a Π′)

and

I = Π′ m′
a

while D represents the rate of acoustic energy dissipation per unit of volume.

In those expressions v′ is the irrotational fluctuating velocity, ρ′a is the acoustic part of

the fluctuating density (ρ′a = p′/c20). The acoustic mass velocity m′
a and the fluctuating

part of the total external mechanical energy (acoustic exergy) Π′ are given by

m′
a = ρ0 v′ + ρ′a v0

and

Π′ = p′/ρ0 + v0.v
′.

The two thermodynamic variables m′
a (extensive) and Π′ (intensive) are very appropriate

to study acoustic propagation in presence of flow. The product of these variables gives

the flux of acoustic energy (like the classical variables u′ and p′ without flow), then all

the formalism of the transmission lines can be applied to these variables in presence of

flow [2], [3].

It could be noted that E is not a real density of energy because this quadratic form

is not positive definite and in some cases of supersonic flow can be negative [2], [4].

Nevertheless, compared to the true energy, this form presents the advantage that D = 0

when the process is isentropic.
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The equation (1) will be applied in its integrated and time averaged form to the junction

of i pipes

∑
i

W i =
∫

V
< D > dV (2)

where

W i =
∫

Si

< m′
x Π′ > dS (3)

is the sound power flowing out of the volume V through the cross-section Si of the

waveguide number i, see figure 1, (m′
x is the projection of m′

a on the normal to the

surface) and the sum is performed over all the waveguides.

In most practical cases, one can divide any acoustic element in presence of flow in two dif-

ferent regions: (i) an internal region of strong interaction between hydrodynamic flow and

acoustic: the volume V in equation (2), (ii) an outer region far upstream and downstream

of the perturbing element where both hydrodynamic and acoustic flow are again ”fully

developed”. In this second region, i. e. in the waveguides, the main flow is assumed to

be axial and uniform across the section (the Mach number is given by M = u0/c0 where

u0 is the axial main velocity).

With those asumptions the entropy and vorticity perturbations (pseudo-sound) in the

waves guides are only convected by the main flow and can be treated separately from

the acoustic pressure waves (sound) by introducing entropy and vorticity currents [2], [3].

The acoustical part of the sound transmission is described by classical wave equation for

acoustical exergy Π′ [5] (
1

c20

D2
0

Dt2
−∇2

)
Π′ = 0. (4)
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A set of transverse orthonormal eigenfunctions ψm(y), associated with axial wave numbers

k±m can be used to expand Π′ in a series:

Π′ = eiωt
∑
m

Πm(x)ψm(y) (5)

in which following Morfey [6] we have:

Πm(x) = Π+
m + Π−

m

=
1

Si

∫
Si

Π′(x,y)ψm(y)dy.

and

k±m =
ω

c0

(±αm −M

1 −M2

)

where

αm =

(
1 −

(
γm

c0
ω

)2

(1 −M2)

)1/2

.

The γm are the discrete eigenvalues of these eigenfunctions.

In the same way, we can define the fluctuating mass flow rate associated with mode m

at section Si by

Mm(x) = M+
m −M−

m =
∫

Si

m′
x(x,y)ψm(y)dy.

The forward and backward mass flow rates M±
m are given, for the mode m, by

M±
m = YmΠ±

m

where Ym = αmρ0Si/c0.

The forward and backward sound power, for the mode m, are calculated from equation

(3)

W±
m = 1/2 Re(

∫
Si

m±
mΠ±

mdS)
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where the bar indicates complex conjugate and Re( ) is the real part. With the above

relations, these sound powers are given by

W±
m = ±Ym

|Π±
m|2
2

= ±YmΠ̃± 2
m

(the tilde indicates an effective value) above the cut-off frequency of mode m (i. e. when

αm is real) and

W±
m = 0

below the cut-off frequency (i. e. when αm is imaginary).

The energy dissipated in the volume V is the difference on all the propagating modes

between the energy flow of incident and scattered waves. For each propagating waves,

incident and scattered amplitudes am and bm are defined such that W inc
m = amam and

W sca
m = bmbm with

am = Ym
1/2Π̃+

m, bm = Ym
1/2Π̃−

m.

Thus, denoting a and b the column vectors of component am and bm, the acoustic power

dissipated in the volume V can be calculated by

Pdis = taa− tbb = taa − ta(tSS)a (6)

where S is the scattering matrix such as b = Sa and tS is the adjoin matrix of S (Hermitian

transpose).
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3 Potentiality of acoustic energy dissipation or gen-

eration

If S is an unitary matrix (tS = S−1), acoustic power dissipation or generation is absent

(Pdis = 0). In the general case, dissipation or generation depend on the non-unitary

character of S and on the phase and amplitude relations between the incident waves.

Without loss of generality, the sum of the energy of the incident waves can be normalized

to 1. In this case, the reflected part of the energy is given by the value of the quadratic

form ta(tSS)a on the multidimensional sphere of radius 1 (taa = 1). This quadratic form

can be reduced to a sum of squares [7]:

ta(tSS)a =
∑

i

λi|di|2, (7)

where the λi are the eigenvalues of the positive definite Hermitian matrix tSS, and thus

real and positive. The vector d is given by d = tTa where T is the unitary matrix which

transforms tSS into the diagonal matrix of the eigenvalues: tT(tSS)T = diag(λ1, λ2, . . .).

The sphere of radius 1 in variables a is transform by T in an other sphere of radius 1 in

the new variables d (tdd = 1). In these new variables, the dissipated power is given by

Pdis =
∑

i

(1 − λi)|di|2 =
∑

i

ξi|di|2. (8)

The maximum and minimum value of λi show respectively the minimum and maximum

of the potentially reflected energy and the values

ξmin = 1 − λmax
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and

ξmax = 1 − λmin

show the minimum and maximum of the potentially dissipated energy [2].

A system is passive if the acoustic energy of the incoming waves is always greater than

the acoustic energy of the outcoming waves and so if the quadratic form (8) is always

positive. This can be obtain if and only if all the eigeinvalues of tSS are smaller than 1.

The eigenvectors of tSS, related to ξmax (respectively ξmin), give the relations to impose to

the incident waves to have a maximal (respectively minimal) part of the incident acoustic

power dissipated.

4 Illustrative examples

In this section, we use the above description to investigate the dissipated power in a

laminar element and in a diaphragm. The scattering matrices of those elements have

been measured with a superimposed mean flow at low frequencies when only plane waves

can propagate in the upstream and downstream waves guides which have the same section.

A 2× 2 scattering matrix relates the upstream exergy Π±
1 to the downstream exergy Π±

2

by ⎛
⎜⎜⎜⎝

Π−
1

Π−
2

⎞
⎟⎟⎟⎠ = [S]

⎛
⎜⎜⎜⎝

Π+
1

Π+
2

⎞
⎟⎟⎟⎠ =

⎡
⎢⎢⎢⎣
R+ T−

T+ R−

⎤
⎥⎥⎥⎦
⎛
⎜⎜⎜⎝

Π+
1

Π+
2

⎞
⎟⎟⎟⎠ . (9)

In this case, the exergy is simply related to the pressure of travelling waves by

Π±
i = (1 ±Mi)p

±
i /ρ0.
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For plane wave propagation in an uniform incompressible mean flow, the use of exergy is

equivalent to the use of convected pressure [8] (p′c = p′+ρ0u0u
′) but differs from the use of

the stagnation enthalpy [9] (B′ = p′/ρ0 +u0u
′ +T0s

′) because the term involving entropy

fluctuations T0s
′ which is generated by irreversible process cannot always be neglected.

The elements of the S matrix could be seen as anechoic pressure transmission coefficient:

T+ = p+
2 /p

+
1 when p−2 = 0,

T− = p−1 /p
−
2 when p+

1 = 0

and modified anechoic pressure reflection coefficient:

R+ =
1 −M

1 +M

p−1
p+

1

when p−2 = 0,

R− =
1 +M

1 −M

p+
2

p−2
when p+

1 = 0.

The schematic description of the experimental set-up is displayed on Figure 2 (for a de-

tailed description of the set-up see [10]). The frequency range experimentally investigated

is 20–800 Hz to ensure that only plane waves can propagate in the upstream and down-

stream waveguide of diameter 30 mm. The elements of the S matrix were determined by

a two sources method [11]. The scattering matrix was measured between the first micro-

phone upstream and the first microphone downstream, then the effect of the propagation

of the planar mode between the element and the microphones (L1 and L2 on Figure 2)

were subtracted. L1 and L2 are respectively about 12 and 24 times the diameter of the

tube. Those large values are meant to avoid measuring in the internal region where the

pseudo-sound is significant.
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4.1 diaphragm in presence of flow

Two circular diaphragms of diameter 15 mm inserted in a tube of diameter 30 mm were

investigated. One of this diaphragm has rounded edges (radius of curvature 1 mm for a

thickness of 2 mm) and the other has sharp edges. The values of ξmin and ξmax which

represent the minimal and maximal possible values of the ratio of the dissipated acoustic

power over the incident acoustic power for the rounded diaphragm are plotted on Figure

3 as a function of frequency for a Mach number M = 0.0475 (symbols) and without mean

flow (solid lines).

Without mean flow ξmax is about 0.02, while it increases significantly in presence of

flow and remains independent of the frequency troughout the investigated range. The

variation of ξmax as a function of the Mach number is depicted on Figure 4 for the sharp

and rounded diaphragms.

The rather abrupt increase of ξmax with increasing Mach number between M = 0 and

M = 0.02 indicates a change in the nature of the dissipation. Without flow the dissipation

is dominated by the viscous effects near the edge of the diaphragm [12]. This is confirmed

by the value of ξmin close to zero. There is almost no dissipation when the diaphragm

is at an acoustic velocity node of a standing wave patern. In the presence of mean flow,

flow separation occurs at the edge of the diaphragm. This allows part of the acoustica

energy to be tranferred to vorticity modes. For sharp edges, this exchange of energy

can be described in term of an inviscid model based on the Kutta condition applied

at the edges (see, for instance, [13] and [14]). The dissipation of the energy of the
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acoustically generated vorticity takes place in a turbulent mixing zone downstream of the

diaphragm. The dissipation process does not interfere strongly with the acoustic plane

wave propagation. As in the absence of mean flow, because the acoustic velocity is the

driving element of the tranfert from acoustic to vorticity modes, a value ξmin close to

zero is found which correspond to a position of the diaphragm at a velocity node of the

acoustic field.

4.2 laminar element in presence of flow

The scattering matrix of a laminar element was measured. This element is a part of a

catalytic converter containing parallel open tubes of square section (0.8 mm × 0.8 mm)

separated by 0.2 mm of ceramic material. The length of this element is 200 mm. The

values of ξmin and ξmax for this element are depicted on Figure 5 as a function of the

frequency for a Mach number M = 0.0605 and without flow.

The values of ξmin are almost indentical with and without mean flow while the values of

ξmax is only increased by 10 % to 50 % by the presence of a mean flow. This behaviour

shows that the very nature of the dissipative process (visco-thermal effects in the small

open tubes) is not affected by the flow. More precisely, a very simple calculation (at low

frequency without flow) shows that ξmin corresponds to the thermal effects that prevail in

a pressure anti-node while ξmax correspond to the viscous effects that prevail in a pressure

node. The results on Figure 5 indicates that the thermal dissipation is unaffected by a

mean flow while the viscous dissipation is increased by the flow.
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For frequencies higher than 400 Hz, ξmin and ξmax are not very different. The dissipation

of acoustic energy is therefore not influenced by the position of the element in the acoustic

system.

5 Conclusion

The acoustic energy conservation law in presence of flow is efficiently described by two

thermodynamic variables: acoustic mass velocity and acoustic exergy. The minimal ξmin

and maximal ξmax ratio of the dissipated or generated a coustic power over the incident

acoustic energy can be computed from the eigenvalues of the product of the scattering

matrix by its Hermitian transpose. It was demonstrated, in two practical situations (a

diaphragm and a laminar element in presence of flow), that some of the physics of the

dissipative process can be deduced from the Mach number and the frequency dependences

of the potentiality ξmin and ξmax.
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List of symbols

c0 sound speed in fluid

E acoustic energy density

I acoustic energy flux

m′
a acoustic mass velocity

m′
x axial projection of m′

a

p′ fluctuating pressure

P rate of acoustic energy production per unit of volume

s0, s
′ main and fluctuating entropy

Si cross-section of the duct i

u0, u′ main and fluctuating total velocity

u0, u
′ axial projection of the main and fluctuating total velocity

v0, v′ irrotational part of the main and fluctuating velocity

Wi sound power in duct i

y transverse position vector

Π′ fluctuating external mechanical energy (acoustic exergy)

ψm(y) duct normalised eigenfunction:
∫
Si
ψmψndS = Si δmn

ρ0,ρ
′ main and fluctuating density

ρ′a acoustic part of the fluctuating density (ρ′a = p′/c20)
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Figure caption

Figure 1 : description of the element.

Figure 2 : schematic description of the experimental set-up.

Figure 3 : minimal and maximal ratio of the dissipated acoustic power over the incident

acoustic power for the rounded diaphragm as a function of frequency. M = 0.0475 : ◦ ,

M = 0 : solid lines.

Figure 4 : maximal ratio of the dissipated acoustic power over the incident acoustic

power for the rounded diaphragm (◦) and for the sharp diaphragm (�) as a function of

the Mach number (the line is only a fit of the data).

Figure 5 : minimal and maximal ratio of the dissipated acoustic power over the incident

acoustic power for a laminar element as a function of frequency. M = 0.0605 : � , M = 0

: solid lines.
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